Course Outline
Introduction to Data Science
We'll start the course by defining what data science is. We'll cover the data science workflow, and how data science is applied to real-world business problems. We'll finish the chapter by learning about ways to structure your data team to meet your organization's needs.
Analysis and Visualization
In this chapter, we'll discuss ways to explore and visualize data through dashboards. We'll discuss the elements of a dashboard and how to make a directed request for a dashboard. This chapter will also cover making ad hoc data requests and A/B tests, which are a powerful analytics tool that de-risk decision-making.
Data Collection and Storage
Now that we understand the data science workflow, we'll dive deeper into the first step: data collection. We'll learn about the different data sources your company can draw from, and how to store that data once it's collected.
Prediction
In this final chapter, we'll discuss the buzziest topic in data science: machine learning! We'll cover supervised and unsupervised machine learning, and clustering. Then, we'll move on to special topics in machine learning, including time series prediction, natural language processing, deep learning, and explainable AI!
Testimonials (4)
Understanding big data beter
Shaune Dennis - Vodacom
Course - Big Data Business Intelligence for Telecom and Communication Service Providers
Subject presentation knowledge timing
Aly Saleh - FAB banak Egypt
Course - Introduction to Data Science and AI (using Python)
It is great to have the course custom made to the key areas that I have highlighted in the pre-course questionnaire. This really helps to address the questions that I have with the subject matter and to align with my learning goals.
Winnie Chan - Statistics Canada
Course - Jupyter for Data Science Teams
The example and training material were sufficient and made it easy to understand what you are doing.