Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF) Training Course
Reinforcement Learning from Human Feedback (RLHF) is a cutting-edge method used for fine-tuning models like ChatGPT and other top-tier AI systems.
This instructor-led, live training (online or onsite) is aimed at advanced-level machine learning engineers and AI researchers who wish to apply RLHF to fine-tune large AI models for superior performance, safety, and alignment.
By the end of this training, participants will be able to:
- Understand the theoretical foundations of RLHF and why it is essential in modern AI development.
- Implement reward models based on human feedback to guide reinforcement learning processes.
- Fine-tune large language models using RLHF techniques to align outputs with human preferences.
- Apply best practices for scaling RLHF workflows for production-grade AI systems.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Reinforcement Learning from Human Feedback (RLHF)
- What is RLHF and why it matters
- Comparison with supervised fine-tuning methods
- RLHF applications in modern AI systems
Reward Modeling with Human Feedback
- Collecting and structuring human feedback
- Building and training reward models
- Evaluating reward model effectiveness
Training with Proximal Policy Optimization (PPO)
- Overview of PPO algorithms for RLHF
- Implementing PPO with reward models
- Fine-tuning models iteratively and safely
Practical Fine-Tuning of Language Models
- Preparing datasets for RLHF workflows
- Hands-on fine-tuning of a small LLM using RLHF
- Challenges and mitigation strategies
Scaling RLHF to Production Systems
- Infrastructure and compute considerations
- Quality assurance and continuous feedback loops
- Best practices for deployment and maintenance
Ethical Considerations and Bias Mitigation
- Addressing ethical risks in human feedback
- Bias detection and correction strategies
- Ensuring alignment and safe outputs
Case Studies and Real-World Examples
- Case study: Fine-tuning ChatGPT with RLHF
- Other successful RLHF deployments
- Lessons learned and industry insights
Summary and Next Steps
Requirements
- An understanding of supervised and reinforcement learning fundamentals
- Experience with model fine-tuning and neural network architectures
- Familiarity with Python programming and deep learning frameworks (e.g., TensorFlow, PyTorch)
Audience
- Machine learning engineers
- AI researchers
Need help picking the right course?
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF) Training Course - Enquiry
Upcoming Courses
Related Courses
Advanced Techniques in Transfer Learning
14 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at advanced-level machine learning professionals who wish to master cutting-edge transfer learning techniques and apply them to complex real-world problems.
By the end of this training, participants will be able to:
- Understand advanced concepts and methodologies in transfer learning.
- Implement domain-specific adaptation techniques for pre-trained models.
- Apply continual learning to manage evolving tasks and datasets.
- Master multi-task fine-tuning to enhance model performance across tasks.
Deploying Fine-Tuned Models in Production
21 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at advanced-level professionals who wish to deploy fine-tuned models reliably and efficiently.
By the end of this training, participants will be able to:
- Understand the challenges of deploying fine-tuned models into production.
- Containerize and deploy models using tools like Docker and Kubernetes.
- Implement monitoring and logging for deployed models.
- Optimize models for latency and scalability in real-world scenarios.
Deep Reinforcement Learning with Python
21 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at developers and data scientists who wish to learn the fundamentals of Deep Reinforcement Learning as they step through the creation of a Deep Learning Agent.
By the end of this training, participants will be able to:
- Understand the key concepts behind Deep Reinforcement Learning and be able to distinguish it from Machine Learning.
- Apply advanced Reinforcement Learning algorithms to solve real-world problems.
- Build a Deep Learning Agent.
Domain-Specific Fine-Tuning for Finance
21 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at intermediate-level professionals who wish to gain practical skills in customizing AI models for critical financial tasks.
By the end of this training, participants will be able to:
- Understand the fundamentals of fine-tuning for finance applications.
- Leverage pre-trained models for domain-specific tasks in finance.
- Apply techniques for fraud detection, risk assessment, and financial advice generation.
- Ensure compliance with financial regulations such as GDPR and SOX.
- Implement data security and ethical AI practices in financial applications.
Fine-Tuning Models and Large Language Models (LLMs)
14 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to customize pre-trained models for specific tasks and datasets.
By the end of this training, participants will be able to:
- Understand the principles of fine-tuning and its applications.
- Prepare datasets for fine-tuning pre-trained models.
- Fine-tune large language models (LLMs) for NLP tasks.
- Optimize model performance and address common challenges.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at intermediate-level developers and AI practitioners who wish to implement fine-tuning strategies for large models without the need for extensive computational resources.
By the end of this training, participants will be able to:
- Understand the principles of Low-Rank Adaptation (LoRA).
- Implement LoRA for efficient fine-tuning of large models.
- Optimize fine-tuning for resource-constrained environments.
- Evaluate and deploy LoRA-tuned models for practical applications.
Fine-Tuning Multimodal Models
28 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at advanced-level professionals who wish to master multimodal model fine-tuning for innovative AI solutions.
By the end of this training, participants will be able to:
- Understand the architecture of multimodal models like CLIP and Flamingo.
- Prepare and preprocess multimodal datasets effectively.
- Fine-tune multimodal models for specific tasks.
- Optimize models for real-world applications and performance.
Fine-Tuning for Natural Language Processing (NLP)
21 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at intermediate-level professionals who wish to enhance their NLP projects through the effective fine-tuning of pre-trained language models.
By the end of this training, participants will be able to:
- Understand the fundamentals of fine-tuning for NLP tasks.
- Fine-tune pre-trained models such as GPT, BERT, and T5 for specific NLP applications.
- Optimize hyperparameters for improved model performance.
- Evaluate and deploy fine-tuned models in real-world scenarios.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at advanced-level AI researchers, machine learning engineers, and developers who wish to fine-tune DeepSeek LLM models to create specialized AI applications tailored to specific industries, domains, or business needs.
By the end of this training, participants will be able to:
- Understand the architecture and capabilities of DeepSeek models, including DeepSeek-R1 and DeepSeek-V3.
- Prepare datasets and preprocess data for fine-tuning.
- Fine-tune DeepSeek LLM for domain-specific applications.
- Optimize and deploy fine-tuned models efficiently.
Fine-Tuning Large Language Models Using QLoRA
14 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at intermediate-level to advanced-level machine learning engineers, AI developers, and data scientists who wish to learn how to use QLoRA to efficiently fine-tune large models for specific tasks and customizations.
By the end of this training, participants will be able to:
- Understand the theory behind QLoRA and quantization techniques for LLMs.
- Implement QLoRA in fine-tuning large language models for domain-specific applications.
- Optimize fine-tuning performance on limited computational resources using quantization.
- Deploy and evaluate fine-tuned models in real-world applications efficiently.
Large Language Models (LLMs) and Reinforcement Learning (RL)
21 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at intermediate-level data scientists who wish to gain a comprehensive understanding and practical skills in both Large Language Models (LLMs) and Reinforcement Learning (RL).
By the end of this training, participants will be able to:
- Understand the components and functionality of transformer models.
- Optimize and fine-tune LLMs for specific tasks and applications.
- Understand the core principles and methodologies of reinforcement learning.
- Learn how reinforcement learning techniques can enhance the performance of LLMs.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at advanced-level professionals who wish to master techniques for optimizing large models for cost-effective fine-tuning in real-world scenarios.
By the end of this training, participants will be able to:
- Understand the challenges of fine-tuning large models.
- Apply distributed training techniques to large models.
- Leverage model quantization and pruning for efficiency.
- Optimize hardware utilization for fine-tuning tasks.
- Deploy fine-tuned models effectively in production environments.
Prompt Engineering and Few-Shot Fine-Tuning
14 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at intermediate-level professionals who wish to leverage the power of prompt engineering and few-shot learning to optimize LLM performance for real-world applications.
By the end of this training, participants will be able to:
- Understand the principles of prompt engineering and few-shot learning.
- Design effective prompts for various NLP tasks.
- Leverage few-shot techniques to adapt LLMs with minimal data.
- Optimize LLM performance for practical applications.
Introduction to Transfer Learning
14 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at beginner-level to intermediate-level machine learning professionals who wish to understand and apply transfer learning techniques to improve efficiency and performance in AI projects.
By the end of this training, participants will be able to:
- Understand the core concepts and benefits of transfer learning.
- Explore popular pre-trained models and their applications.
- Perform fine-tuning of pre-trained models for custom tasks.
- Apply transfer learning to solve real-world problems in NLP and computer vision.
Troubleshooting Fine-Tuning Challenges
14 HoursThis instructor-led, live training in Oman (online or onsite) is aimed at advanced-level professionals who wish to refine their skills in diagnosing and solving fine-tuning challenges for machine learning models.
By the end of this training, participants will be able to:
- Diagnose issues like overfitting, underfitting, and data imbalance.
- Implement strategies to improve model convergence.
- Optimize fine-tuning pipelines for better performance.
- Debug training processes using practical tools and techniques.